Stress response in yeast mRNA export factor: reversible changes in Rat8p localization are caused by ethanol stress but not heat shock.

نویسندگان

  • Reiko Takemura
  • Yoshiharu Inoue
  • Shingo Izawa
چکیده

Ethanol stress (10% v/v) causes selective mRNA export in Saccharomyces cerevisiae in a similar manner to heat shock (42 degrees C). Bulk poly(A)(+) mRNA accumulates in the nucleus, whereas heat shock protein mRNA is exported under such conditions. Here we investigated the effects of stress on mRNA export factors. In cells treated with ethanol stress, the DEAD box protein Rat8p showed a rapid and reversible change in its localization, accumulating in the nucleus. This change correlated closely with the blocking of bulk poly(A)(+) mRNA export caused by ethanol stress. We also found that the nuclear accumulation of Rat8p is caused by a defect in the Xpo1p/Crm1p exportin. Intriguingly, the localization of Rat8p did not change in heat shocked cells, suggesting that the mechanisms blocking bulk poly(A)(+) mRNA export differ for heat shock and ethanol stress. These results suggest that changes in the localization of Rat8p contribute to the selective export of mRNA in ethanol stressed cells, and also indicate differences in mRNA export between the heat shock response and ethanol stress response.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The nuclear pore complex and the DEAD box protein Rat8p/Dbp5p have nonessential features which appear to facilitate mRNA export following heat shock.

Nuclear pore complexes (NPCs) play an essential role in RNA export. Nucleoporins required for mRNA export in Saccharomyces cerevisiae are found in the Nup84p and Nup82p subcomplexes of the NPC. The Nup82p subcomplex contains Nup82p, Rat7p/Nup159p, Nsp1p, Gle1p/Rss1p, and Rip1p/Nup42p and is found only on the cytoplasmic face of NPCs. Both Rat7p and Gle1p contain binding sites for Rat8p/Dbp5p, a...

متن کامل

Hsp16p is required for thermotolerance in nuclear mRNA export in fission yeast Schizosaccharomyces pombe.

Export of mRNA from the nucleus to the cytoplasm is one of the essential steps for eukaryotic gene expression. In the fission yeast Schizosaccharomyces pombe, heat shock stress at 42 degrees C causes block of mRNA export from the nucleus. We now report that saline and ethanol stresses also inhibit nuclear mRNA export, resulting in accumulation of bulk poly (A)+ RNA, as well as a specific mRNA, ...

متن کامل

Heat shock and ethanol stress provoke distinctly different responses in 3'-processing and nuclear export of HSP mRNA in Saccharomyces cerevisiae.

Under conditions of heat shock at 42 degrees C, mRNAs of HSP (heat shock protein) genes are exported out of the nucleus, whereas bulk poly(A)(+) (polyadenylated) mRNA shows a nuclear accumulation in Saccharomyces cerevisiae. Such a selective mRNA export seems an efficacious strategy of yeast cells to adapt rapidly to stress. Although ethanol stress (10%, v/v) as well as heat shock blocks the ex...

متن کامل

Prioritized Expression of BTN2 of Saccharomyces cerevisiae under Pronounced Translation Repression Induced by Severe Ethanol Stress

Severe ethanol stress (>9% ethanol, v/v) as well as glucose deprivation rapidly induces a pronounced repression of overall protein synthesis in budding yeast Saccharomyces cerevisiae. Therefore, transcriptional activation in yeast cells under severe ethanol stress does not always indicate the production of expected protein levels. Messenger RNAs of genes containing heat shock elements can be in...

متن کامل

Association of constitutive hyperphosphorylation of Hsf1p with a defective ethanol stress response in Saccharomyces cerevisiae sake yeast strains.

Modern sake yeast strains, which produce high concentrations of ethanol, are unexpectedly sensitive to environmental stress during sake brewing. To reveal the underlying mechanism, we investigated a well-characterized yeast stress response mediated by a heat shock element (HSE) and heat shock transcription factor Hsf1p in Saccharomyces cerevisiae sake yeast. The HSE-lacZ activity of sake yeast ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 117 Pt 18  شماره 

صفحات  -

تاریخ انتشار 2004